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Langmuir probes are extensively used to sample plasma densities. However, the interpreta-
tion of probe data is well established only for the limiting cases of collisionless and collision-
dominated plasmas. A transitional regime prevails in some fluid-dynamic situations and
electrical discharges in which the ions are colder than the electrons. A simple theory which
accounts separately for the effects of collisions between charged particles and collisions with
neutrals is presented. When the theory is applied to recent experimental data taken with
eylindrical as well as spherical probes, the electron densities calculated from the probe mea-
surements by using the present theory agree within 10% with those inferred from existing
numerical solutions, an empirical formula, and microwave cavity data.
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aspect ratio
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electric field

electric current
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normalized ion current
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focal distance
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normalized number density
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spherical radial coordinate
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normalized collision frequency
spheroidal length coordinate
normalized potential

mean free path

Debye length

spheroidal angular coordinate
collision frequency
normalized inverse radius
cylindrical radial coordinate
potential

plasma frequency
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Superscripts

o = collisionless A.B.R. theory

Subscripts

o

cylindrical

cavity measurement
electron

ion

neutral

sheath edge

probe

spherical

far-away from the probe
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I. Introduction

ANGMUIR probes are extensively used to sample plasma
densities. For this purpose ion collection is preferable
over electron collection because in the former case, the current
drawn and, therefore, the perturbation introduced by the
probe are much smaller. For a'given potential difference be-
tween the probe and the plasma, the collected ion current de-
pends strongly on the temperature of the electrons as well as
the ions. In most electrical discharges and in many hyper-
sonic testing facilities the ions are much colder than the elec-
trons. As a consequence a great deal of attention has been
paid to this particular situation.
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Relatively good agreement between theory and experiment
has been obtained with spherical probes especially in the
limiting cases of collisionless and collision-dominated plasmas.
Such good agreement has not been obtained with the more
widely used cylindrical probes. With this geometry and in
the presence of ion-neutral collisions a theoretical analysisen-
counters difficulties, because the assumption of cylindrical
symmetry leads to a problem which is not well posed mathe-
matically. In the absence of collisions there exist two mathe-
matically consistent theories.” 1) The macroscopic theory of
Allen, Boyd, and Reynolds! [(A.B.R., see also Ref. 2)] pre-
dicts that the ion saturation current density increases mono-
tonically with decreasing probe radius. 2) The microscopic
theory of Bernstein and Rabinowitz® [(B.R., see also Refs. 4
and 5)] predicts that the ion saturation current should
saturate for probe radii smaller than the sheath thickness, asa
result of the orbital motion of the particles.” Experimental
data taken by Sonin® do not exhibit the expected saturation
effect.  Nor has it been observed in later experiments con-
ducted under quite different plasma conditions by Self and
Shih? and Lederman, Bloom and Widhopf.?

The present investigation is aimed at detecting the effect of
collisions on ion collection, by studying the transitional re-
gime where the number of collisions occurring within the
space-charge-sheath enshrouding the probe is small but finite.

We begin by considering the spherical probe, a case in
which collisionless theories are well established and give sub-
stantially the same results in the limit of small ion temperature,
since orbital motion is not important. The effect of collisions
on the determination of plasma density was already considered
by one of these authors (Shih).” However, the procedure in-
volved was based on numerical computations. We seek here,
instead, a simpler, approximate analytical method where the
collision frequency is treated as a small parameter in a pertur-
bation scheme. In essence we neglect the ecollision effects
within the space-charge-sheath but we take into account the
ohmic drop in the quasi-neutral plasma region.

Friedman and Levi® have shown that the velocity with
which the ions enter the space-charge-sheath does not depend
on the amount of collisions which occur in the quasi-neutral
plasma region. If in addition the space-charge-sheath is con-
sidered collisionless, the radius of the plasma-sheath interface,
and therefore the plasma density at that point, are also inde-
pendent of collisions and can be determined with the help
of a collisionless theory, for instance the A.B.R. theory.!-? If
we now assume that in the quasi-neutral plasma region the
common electron and ion densities are related to the electric
potential by the Boltzmann factor, the desired plasma density
far-away from the probe can be obtained simply by deter-
mining the voltage drop across the quasi-neutral plasma re-
gion. This is the collisionless drop, which according to Lam?!®
corresponds to one half the electron thermal energy, aug-
mented by the ohmic drop resulting from collisions. The
latter is adequately approximated by using the velocity pro-
file corresponding to the collisionless theory.

The cylindrical probe is considered next. In this case, due
to the two-dimensional character of the problem, the electric
field extends to larger radii than with spherical probes and the
likelihood of orbital motion is greater. The orbital motion
can be taken correctly into account only by a microscopic
theory, such as the B.R. theory. However, since the Coulomb
cross section for ion-ion collisions increases rapidly as the
temperature decreases, in the limit of small ion temperature,
there always exist ion-ion collisions in sufficient numbers to
destroy the orbital motion. In the presence of collisions the
angular momentum of the individual particles is not con-
served; the ions, while approaching the probe, fail to acquire
sufficient transverse velocity to perform orbital motion and
are therefore collected. As a result the B.R. theory under-
estimates the ion saturation current, even in the absence of
collisions with neutrals. The A.B.R. theory,-on the other
hand, being macroscopic, takes correctly into account ion-ion
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collisions which do not affect the overall conservation of
momentum of the species. However, in the presence of col-
lisions with neutrals, it overestimates the ion saturation cur-
rent. For this reason we base our calculations on the
A B.R. theory and introduce the effect of collisions with neu-
trals, by using the same perturbation techniques as for the
spherical probe. Moreover, in order to make the problem
mathematically well posed, we approximate the finite-length
cylindrical probe by an ellipsoid of revolution, i.e., a spheroid.

II. Theory for Spherical Probes

In this section we develop a theory for spherical probes.
Our treatment refers to a plasma satisfying the following
conditions: 1) the plasma is infinite in extent, 2) the probe is
operated in the ion saturation regime, so that the electron
density has a Boltzmann profile, 3) the mean free path, either
for ion-ion, or ion-neutral encounters is smaller than the
sheath thickness and satisfies an inequality derived in Ap-
pendix A, and 4) collisions with neutrals do not exceed an
upper bound which is defined in Appendix B.

Under these circumstances the ion dynamics can be de-
scribed” by a set of three macroscopic equations: a) a con-
tinuity equation in which the generation and recombination
terms are ignored, b) a momentum equation in which the pres-
sure term V - @ is dropped and the collision integral is set equal
to a constant collision frequency v:. times the average momen-
tum density, and (¢) Poisson’s equation. This set is then
given’ by

V-NN,- = 0
mN(Vi- V)V = —eZN;Vo — vum:NV; (1)
V2o = —4ne(ZN; — N.)

We introduce the following standard normalization and
coordinate transformation

n = ep/kT.; v = —V./(ZkT./m)"; = ZN;/N 0
E=r/ho; = @EDVE  y = v/
where
Ap = (kT./47N ,,0e2)1/?
wpi = (4nN . .0e*Z/m;)1/?
J = (m/2Z) %L/ (kT.)**?

By introducing a spherical coordinate system and by letting
N. = N.° expleg/kT.) and N; = —1I;/4nr%ZV;, we obtain

dv/dx = [—zdn/dx — v(2V2) 1 W]/x% 2)
d?p/dx? = —(2V2]) (22 — v expn)/z% 3)

These two equations have been solved numerically in Ref. 7
for various values of J and ¥ subjeet to the boundary condi-
tions at infinity (x = 0) '

?

v=19n=1 = (

If we introduce the series expansion

@
b= 2, a2
n=0

n= =2 bar
n=0

we find that the first few coefficients of the series obtained
from Egs. (2) and (3) are

@ =a =20 a = 1 az = (2U2])1%y
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as = (2U2)y2 as = (2U2])3243 a = X
@Dy + § — 4

b, =0 by = (QU2])/2y by = %(21/2J)72

b3 — %‘(21/2:7)3’2’)’3 by = %(21/2!])274 + %

In the limit of zero ion-neutral collisions the system of equa-
tions reduces precisely to that of the A.B.R. theory and the
coefficients become

a3°=0
bo°=b1=b2°=b3"=0 b4a=~21<

We observe that in this case the first significant term in 7 is
be, so that the potential decays asymptotically as r—4 In
the collisional case, instead, the first significant term is by,
thus indicating a much slower decay, proportional to r—.
With regard to velocity, however, collisions seem to have a
much smaller effect because in both cases the velocity decays
asymptotically as r—2. In seeking solutions which are valid
in the presence of a small amount of collisions, we are, thus,
prompted by these observations to construct a perturbation
scheme in which the collisionless »° appears as the zeroth order
solution and the collisional term v (2V2))V% in Eq. (2) is
treated as a small perturbation.

If we define as the sheath edge the radius at which the
space charge becomes appreciable, we know from the work of
Schulz and Brown!! that its position is not affected by a slight
amount of collisions not exceeding the limit set by Eq. (B2) of
Appendix B. Hence, denoting by a subscript o the value
which the variables attain at the sheath edge, we haver, = r,e
orz, = z,°. We also know from the work of Friedman and
Levi® that, irrespective of collisions, the directed velocity of
the ions at the sheath-edge must satisfy Bohm criterion, i.e.,

Vie = Vo =—1k(ZT. + Ts)/m;]V?
or for cold ions
Vie = ~(ZET./m)V?

a°=ay° =0 ar =1

v =1

Integrating Eq. (2) with respect to z from zero (r — «) to the
sheath edge z,(r = r,) and introducing the collisionless values
for z, and v, we obtain

= =@t —a=—}—a @

where
a = y(@QVrH/ 7o Ddz
( 121 21'0 (v/ 2)

Since we have assumed that collisions cause only a minor per-
turbation, we can evaluate a by substituting »° for ». Inte-
gration of the series solution term by term then yields

a = vVl + forot + 3G 4+ §8 D2t + L L.
= (@A)t (5)
The position of the ‘s'heath edge z.,° can be obtained from the
continuity relation with the assumption of neutrality in the
region outside the sheath
I; = —47wro%ZN, Ve = —47r,2%V0°Noo® expn (6)
and '
z° = (1,° expno)l? = pol/2 exp(—vo"z/4) = (.78

It appears, then, that the position of the sheath edge z.° is
rather insensitive to the assumed value of the ion velocity v,
and that the neglected higher order terms contribute less than
5% to the value of a.

In physical terms the correction parameter o represents a
normalized ohmic drop due to jon-neutral collisions. Rein-
troducing dimensional quantities this ohmic drop can be

Fig.1 Spheroidal coordinates.

written as
okT./e = (viai/€*N wZ) (ro/4mroD];

where viam./e?ZN..> thus assumes the role of an equivalent
resistivity. '

Once «a has been evaluated it is possible to correct the value
of plasma density N..® obtained from the collisionless A.B.R.
theory by making use again of the continuity relation

Ii = —477,°V N oo expne (7)

A comparison of Egs. (6) and (7) with V;, = V2, then, yields
according to Eq. (4) :

New® = N exp(ne® — 7,) = Neo® expa ®)

III. Theory for Cylindrical Probes

We now turn our attention to the more commonly used
cylindrical probes. Again we assume that the plasma is de-
scribed by Eqgs. (1) but, in order to take properly into ac-
count the effect of finite length of the probe we use a spheroidal
coordinate system.!? A probe of twice the actual length of
the cylindrical probe and collecting twice as much current is
approximated by a prolate spheroid and fitted into a constant
coordinate surface which belongs to a family of confocal pro-
late spheroids (Fig. 1). This is done by choosing an appro-
priate aspect ratio. Furthermore we assume that the
potential distribution varies along the length coordinate §
only and is independent of the angular coordinate g. Similar
assumptions have been made by Cohen'® and Su and Kiel*
for collision-dominated plasma. However, whereas they
assume that the density and ion velocity are likewise inde-
pendent of u, we will find from Poisson equation that this last
assumption is unsustainable and, therefore, we retain the
u-dependence in N; and V;. To justify our assumption that
the potential depends on { only, we observe that this is
strictly the case at both extremes: far-away from the probe,
since there the equipotential surfaces approach a spherical
form, and in the neighborhood of the probe, since the probe
surface, which is assumed to coincide with one of the prolate
spheroids, is an equipotential surface. With regard to the
ion velocity, we assume that V; is parallel to the electric field
E. The assumed motion of the ions along the lines of force of
E implies that we rely on collisions to impede orbital motion
and other inertia related effects. Significant departures from
the assumed trajectories are likely to occur only in those
regions near the probe where the curvature of its surface
undergoes a rapid change. Our analysis will show that, as
with spherical probes, the collision correction factor, which we
are seeking, is proportional to the total energy lost by the
ions to the neutrals along their entire trajectory up to the
sheath, i.e.,

f :’ Mvin Vil

In the case of a cylindrical probe the electric field penetrates
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deep into the plasma and, therefore, the main contribution to
this integral comes from the region far from the probe. The
assumptions made with regard to ion velocity, therefore, do
not introduce significant error.

In order to express the fundamental set of equations, Eqs.
(1), in spheroidal coordinates we introduce first a eylindrical
system with radius p and axial coordinate z. In this system
the equations describing confoeal prolate spheroids are

pY(§* — 1) + 2%/§ = L*/4 )

. where {(>1) is the spheroidal coordinate of length and L is
the focal distance corresponding in our case to about twice
the probe length [L = 2L,(1 — 1/¢,%)] with ¢, being the
aspect ratio of the probe. The confocal orthogonal surfaces,
hyperboloids of two sheets are given by

—p¥/ (= w3) + 2/ut = L¥/4 (10)

where u is the angular spheroidal coordmate (Ju| < 1) and

the metrical coefficients are
= L/ ~ )/ — DI
= L/2)[(* — w)/A — pH)]?
— W/DE = DY —
The aspect ratio ¢¢ of the {. spheroid is defined as
G = Zmax/Pmax = {o/(§* — D2 1

We introduce the same normalization scheme as for the
spherical probe. This normalization and the assumptions
made with regard to the potential and the ion velocity lead to
the following set of equations govermng the dynamics of the
ions

Q) — w)'2(E* ~ Div] = 0 12)

@Ap/L)v(dv/d§) = —(2Ap/L)(09/0¢) +
I — p)/(E = DIV (13)

[/ — p)1R/N I — Dn/a)] =
(L*/4Np*) (expn — m) (14)

Since the left hand side of Poisson’s equation (Eq. 14) con-
tains u and, according to our assumptions, 7 is a functlon of ¢
only, we conclude than n depends on p.

Equation (12) can be integrated over { to give

Glp) = (§* — w2 = Dn(Cp(Ew) (15)

G(p) is, thus, an unknown function independent of ¢ which
can be related to the total ion-current I; by integrating again
over u. Since generation and annihilation of ions have been
neglected the total current entering any closed surface en-
closing the probe is conserved. In particular we choose the
spherical surface at infinity where r = L{/2, and obtain

1 1
[ wan= [ @2 = wre = Dot pds =
. )
im [ em@o@)as a6)
£=2r/L—»
We observe that on the infinite sphere n and v depend only on
¢ and therefore the integration is straightforward and, with
2r/L replacing ¢, yields
1
[ 6w = lim
-1 2r/L—>

$=2r

20(He(§) =

L
LrI2N oe(Zk T, /m:) 12

a7

Equation (12) in the set of governing equations can now be

ATAA JOURNAL

replaced by

[ @ = we — DG s =

I
Ir LN .oe(ZkT./m) /2

(18)

In order to determine the plasma density we proceed, as in
the case of the spherical probe, with a perturbation scheme
based on the collisionless solution. By letting v = 0, and
assuming v = 9 = %’ = 0at infinity, we obtain from Eq. (13):

= (= 2qe)1s 19)

Introducing this relation and n = ¢ Eq. (18) can be re-
written for the quasi-neutral region as

f_ll (£ — p)12(¢2 — D2 (—290) 2y =
I;
LxL%N o0 (ZETo/m:) V2

and, finally, integrating and normalizing as
B = (=B LA = DV §sin /9]
(20)

We then assume, as for the case of the spherical probe, a
series solution and replace #° in Eq. (20) by

== 5 b/

The collisionless potential in the plasma region ¢ > 1 is then:
7 = — 20N/ + 4/385 + ... .1 (21)

According to Eq. (19) the velocity is:
= (22\pW/LY[1/¢? + 2/374 + ... ] (22)

Replacing ¢ by 2r/L we obtain the asymptotic solution for the
potential

7 ~ —J2(7'4/)\D4) = —$4/2 (23)

This, of course, agrees, as it should, with the potential of the
spherical probe, since for r > L both the ellipsoidal and
spherical probes look like a point probe.

The collision correction factor is obtained next, by following

the same procedure as for the spherical probe. Integrating
Eq. (13) we obtain, similarly to Eq. (4),
o=~ ~ B
where
’YL f;-oo §‘2 — MZ 1/2
== 24
B = 2 (52E) (24)

The upper limit {.° corresponds to the value of ¢ at the sheath
edge. The corresponding p.° can be estimated by approximat-
ing the sheath surface to be c¢ylindrical and by making use of
the continuity equation

27 poeV i LN oo expn,s = —1;

If 5.0 is known, one can determine p.° and hence {,° making
use of Eq. (11)
Co = [@ps/D)* + 1112

Since 2p,°/L is likely to be in the order of 0.1 or less, { = 1.
Expanding ({2 — u2)V2/(¢2 — 1)¥2as1 — (u?2 — 1)/20%. ...
and integrating Eq. (24) term by term, with v replaced by v°,
we finally obtain
B = (2%*yNpJ/L)(25/18 — p?/6 + ...) =

(35219 yJAp/L  (25)
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Table 1 Cylindrical probe measurements in an electrical discharge®

» o T, vio  I(np = —10) N0 — Vi, N5
mm 10~2¢m 103°K 108 /sec ma pp/AD 10%/cc 10%em/sec eB 101 /¢e
3.81 3.00 2.00 1.81 1.15 2.09
0.05 1.27 136 1.3 2.05 0.76 1.96 1.66 1.07 2.10
0.635 1.25 0.29 1.28 1.06 1.36
3.81 3.25 2.40 2.28 1.18 2.89
0.095 1.27 130 2.5 2.45 0.80 2.45 1.63 1.21 2.96
0.635 1.50 0.37 2.11 1.10 2.32
3.81 3.60 2.81 2.90 1.25 3.66
0.12 1.27 114 3.1 2.40 0.94 3.01 1.52 1.17 3.53
0.635 1.75 0.45 2.71 1.13 3.06
0.21 3.81 4.25 3.77 4.65 1.40 6.50
1.27 98 5.5 2.80 1.23 4.55 1.41 1.28 5.82
0.635 1.85 0.55 3.62 - 1.22 4.42
0.30 3.81 5.00 5.03 7.01 1.65 11.5
1.27 85 7.8 3.00 1.61 6.42 1.32 1.39 8.90
0.635 2.10 0.67 5.68 1.35 7.82
0.38 3.81 5.20 5.61 7.71 1.84 14.2
1.27 75 9.9 3.25 1.82 7.52 1.24 1.46 10.7
0.635 2.40 0.95 7.16 1.35 9.81

2 Based on experiments performed at Stanford University.

where the term containing p? has been dropped, since its
contribution does not exceed 12%.

For comparison with the case of the spherical probe, the
ohmic drop due to ion-neutron collisions can now be written
in terms of dimensional quantities as

BkT./e = (25vinhp?)/OLV (0 =
[(piamis)/ (€N o2 Z)1(25/36w L)1 ;

The correct value of the plasma density is given, as for the
spherical probe, by

N..F = N, (26)

It should be noted that, in contrast with the case of the
spherical probe, knowledge of the sheath radius p,° is not re-
quired in order to determine the collision correction factor.

1V. Comparison with Experiments

Application of the theory described in the previous two see-
tions involves the following steps: 1) Measurement of the
ion saturation current at a normalized biasing potential in
excess of {7,] = 5. 2) Determination of the electron tem-
perature T, either from the slope of the volt-ampere charac-
teristic, or from an independent measurement. 3) Evaluation
of the hypothetical electron density N .. from the collisionless
A.B.R. theory (see Ref. 2). 4) Determination of the ion-
neutral collision frequency »., from ionic mobility considera-
tions 5) Calculation of the correction index « or 8 from Egs.
(5) or (25), respectively. 6) Determination of the corrected
electron density N...” or N..” from Eqgs. (8) and (26).

This procedure will now be applied to a series of experi-
ments performed by Self and Shih? at Stanford University in a
gaseous electrical discharge with no mass flow, and to labora-
tory studies performed by Lederman, Bloom and Widhopf at
the Polytechnic Institute of Brooklyn in a slightly ionized hy-
personic flow.

A detailed description of the Stanford experiments is
presented in Ref. 7. The operating conditions in the
positive column of the hot-cathode helium discharge varied in
the range N, = 1.6 X 102 — 1.4 X 10%/¢e, T, = 75,000° ~
136,000°K, T; = 300°K, and p = 0.05 — 0.4 Torr. Three
spherical probes of radii r, = 0.089, 0.047, and 0.026 cm, and
three eylindrical probes with L, = 1 em and radii p, = 0.038,
0.013, and 0.0063 cm were placed on the axis of the discharge.
The plasma concentrations deduced from the probe charac-
teristics were compared with those deduced from microwave
cavity measurements. The data taken with microwave diag-

nostics and with spherical probes at various values of back-
ground pressure and discharge current, as well as the densities
obtained from numerical computations are presented in Tables
II and I1I of Ref. 7. The data taken with eylindrical probes,
while keeping the discharge current constant at a value I'p =
200 ma and varying the discharge pressure, as well as the re-
sults of the calculations according to the present theory are
given in Table 1.

It appears from column 6 that p,/Ap varied in these ex-
periments between 0.3 and 6, and that 15 out of the 18 data
points were located in the parametric domain p,/Ap < 3
where, in the absence of collision, the current drawn by the
probe should have been limited by orbital motion. In all
these points the measured currents exceeded the predictions of
Laframboise’s theory by as much as four times.

The plasma concentrations evaluated over a wide range of
background pressures and discharge currents are shown in Figs.
2 and 3 for spherical probes and in Fig. 4 for eylindrical
probes. In these figures N.. denotes the average density, as
given by cavity measurements, while N..(0) denotes the

13+

New /

12| (10'%/%ce) /

P{mm)

i ¥ ' i t 1 Rl 1 L
0 o1 0.2 03 04

Fig. 2 Plasma concentrations as a function of pressure,
(spherical probes, In = 200 ma, 4, = —10).
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Fig. 3 Plasma concentrations as a function of discharge
currents (spherical probes, p = 0.38 mm, », = —10).

estimated density along the axis of the column where the
probes were located. The evaluation of N..(0) was based on a
standard density profile.®® N..» and N....> denote the average
densities resulting from the application of the collisionless
A.B.R. theory to the data obtained from the three spherical
and three cylindrical probes, respectively. N. denotes the
densities obtained on the basis of the Self and Shih theory” for
spherical probes. Finally the data points, N..”, and N mﬁ,
denote the densities and their average values calculated
using Eqs. (8) and (26) of this paper for the spherical and
cylindrical probes, respectively. These figures indicate that
of the 51 data points of different probes, the scattering among
38 of them does not exceed 109 and among the remaining
points does not exceed 20%, moreover, the densities evaluated
on the basis of the theories presented here for both spherical
and cylindrical probes agree with N, within 109. It must be

13-
New /
121 (10'%¢c) / =8

| 1 1 1 1 1 | | | P{mm)
o] [eX 0.2 03 04

Fig. 4 Plasma concentrations as a function of pressure
(cylindrical probes, Ip = 200 ma, », = —10).
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Fig. 5 Plasma concentrations as a function of probe
radius (cylindrical probes, n, = —35).

noted that the current drawn by the probes depresses the
plasma density along the axis of the column and this explains
why N. is consistently lower than N..(0), the density on the
axis as calculated from cavity measurements. In contrast
N. is consistently higher than N..°, the density given by the
A.B.R. theory, especially at the higher background pressures
where collisions with neutral become important.

A detailed description of the experiments conducted at
PIB is given in Ref. 8. The experiments conducted with
cylindrical probes in a shock tunnel were designed to investi-
gate the effects of finite probe length, angle of attack and par-
ticularly the validity of Laframboise’s orbit theory in a regime
where the orbital-motion-limit was presumed to prevail.
These tests were recently repeated under more carefully con-
trolled conditions and with more accurate diagnostics, but
essentially with the same results. The operating conditions
were'®: Driver gas = air at 38 torr. T; = 70°K, T. =
3000°K, N... = 2 — 4 X 10%/cc, p, = 6.36 X 1073 — 1.016
X 1071 em, L,/p» = 100. The experimental results showed
that direct application of Laframboise’s orbit theory resulted
in plasma densities which in the orbital-motion-regime were
too high by one order of magnitude. The authors fitted
their measured ion currents into an empirical formula®
(L.B.W.) and obtained a plasma density of about 4 X 108/cc
for six different probes in five different runs. This density
was confirmed by microwave cavity measurements which
yielded a density between 2 X 10% and 4 X 108/cc. The re-
sults of our ealculations are given in Table 2.

Figure 5 shows the average densities estimated in five runs
as a function of the probe radius p,.  N.olsf, NoolBY, Newo

Table 2 Cylindrical probe measurements in a
hypersonic flow®

jpp (’71’ = _35) Ne:oo Newﬁ
10-2 cm ua pp/AD 101 /¢ce & 10 /ce
0.635 2.56 . 0.35 3.78 1.17 4.42
1.27 5.43 0.69 3.55 1.19 4,24
2.54 12.7 1.39 3.57 1.23 4.39
5.08 27.6 2.78 2.83 1.35 3.82
7.62 45.1 4.16 2.69 1.38 3.7
10.16 66.0 5.56 2.70 1.42 3.83

% Based on data taken from Ref. 16, 7. = 3,000°K, T; = 70°K, NeoLBW
= 4.26 X 108/ce, Lp/pp = 100, vin = 8.7 X 104/sec.
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and N..? denote the densities calculated on the basis of La-
framboise’s, L.B.W.’s, A.B.R.’s and our theory, respectively.
It is seen that our theory leads to densities which agree quite
well with those deduced on the basis of the L.B.W. formula
and confirmed by microwave cavity measurements. -The
experiments at Stanford and at the Polytechnic cover quite a
spectrum of plasma regimes, as can be judged by the following
range of parameters 70°K < T: < 300°K; 3,000°K < T. <
136,000°K; 2.1 X 1073 < T:/T. < 2.3 X 1072; 0.05mm <
Ap < 0.2mm

3 < Nin/Ap < 20,
3 < Ni/Ap < 10,

2 < rp/Ap <13, 25 < Lp/pp < 150
0.3 < pp/Ap <5

In addition the ratio of flow velocity to ambipolar sound speed
varied from zero to 3.4. Good agreement between the density
calculated on the basis of our theory and the density evaluated
from microwave interferometry was also obtained for an ex-
periment performed at Cornell University by Dunn and Lordi
with 3 < Min/Ap < 5 and 350 < Nii/Ap < 500. This means
that even when the ion-ion collisions are truly negligible
a slight amount of collisions with the neutrals is sufficient
to prevent orbital motion and therefore make our theory
applicable.

Concluding Remarks

We have describeéd a new method for the evaluation of
plasma density by means of ion collection in a regime where
collision effects are small but not negligible. This should be
interpreted to mean that, to the lowest order in the perturba-
tion scheme, the method applies when 1) the ion-neutral col-
lision frequency is, according to Eqgs. (B2) and (B4) of Ap-
pendix B

Vin <K (%)To°kTewpi2/eI¢
for a spherical probe
Vin K LpkTewpi/el;

for a cylindrical probe. 2) The reduced mean free path is,
according to Eq. (A9) of Appendix A,

N = (1/)\1;i + 1/)\;‘,0”1 S pp(-—e‘ap/kTi)lm

where \;; is the ion-ion and M. the ion-neutral mean free
path, and ¢, is the probe potential. Under the latter con-
dition there exists enough collisions in the sheath to prevent
the orbital motion of the ions. The plasma density can then
be found, by multiplying the density evaluated on the basis of
the A.B.R. theory by a correction factor ¢* or ¢® are given by
Eqgs. (5) and (25) for the spherical and cylindrical probes, re-
spectively. The corrections thus introduced lead to densities
which are in agreement with recently published experimental
evidence and, in partjcular, with two sets of tests performed
at Stanford Un1vers1ty and at PIB in quite dlfferent plasma
regimes.

The problem of a spherical probe in a slightly collisional re-
gime has been extensively investigated and numerical solutions
are available for comparison.® Among these investigators
Blue and Ingold,”® Waymouth!® and Chou et al,® Kagan
and Perel’?! obtained analytical correction factors for the case
of electron collection. Despite the fact that their approaches
are quite distinet from one another, they all arrive at the same
functional dependence on 7, and .., i.e., 1 + #ry/\.» with a
slightly different numerical factor ». In the-case of small
values of @ and 8 our correction factors for ion collection can
be similarly expressed as 1 + a or 1 + B, with o = 1.5(T:/
T2/ Nin.  Thus, we see that in addition to the replace-
ment of the probe radius by the sheath radius, a substitution
which does not greatly affect the results, there appears the
square root of the ratio between ion and electron temperatures.
In the case of interest, when the ions are colder than the elec-
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trons, this multiplicative factor reduces the collision correction
considerably. As a result we find good agreement with ex-
periment even when the mean free path is a small fraction of
the sheath radius and many collisions occur in the sheath.

Appendix A

An estimate of the effectiveness of collisions in impeding
orbital motion can be obtained by modifying Langmuir’s
analysis?® as follows. We consider the cylindrical probe,
where orbital motion is more likely to occur, and we assume
that the ions fall freely within a distance from the probe sur-
face equal to a reduced mean free path \; = (1/Ai; + 1/A:) L
We assume that the ions enter the cylindrical surface of radius
a = pp + N\ with a-velocity distribution function in which the
portion corresponding to inwardly directed velocities corre-
sponds to the shifted Maxwellian

fluows) = (2 ”;T) exp { mif(uq +2Z07)13 + wuzll

(AD)

where u, and w, are the radial and azimuthal components of
the ion velocity vector, and —u, is the most probable radial
velocity.  Since most of the potential drop occurs near the
probe surface we may assume that the ions fall freely through
a potential ¢,. By conservation of energy and angular mo-
mentum we then have

Up? + wy? + 2e@p/m;

awa = p W,

. ua2 + wu2
: (A2)
and solving for u,?
u? = w? + wat(l — a¥/p,?) — 2epp/m;
The condition that u,? be positive imposes a maximum value
¥ = (U2 = Yeg,/m) U@ ot — DTV (A3)

for the azimuthal component of velocity of the particle col-
lected by the probe. The total collected current thus be-
comes

= 2meZN.L,a (2 Y;CMT) ffm Uadlig f_+ww *

: exp X
_ mi[(ua + u0)? + wa?]
{ kT, l dwa

introducing the notation
I' = (wkT:/2meZN Lyam;)]
Us + Uy = UT
We = Ussl
U = (2kT;/m;)V?
we obtain

wo/Uth wa*/Uth
I'= f Un’T fo e~="" dedy —
®

e/ a*/
f muthuouch2 fow B e_zg—wzdxdy (A5)

= Il' + Iz'

Since wo¥*/um = W/uu? — epy/kTHV2(aY/ ppt — 1)712
and for a highly negative probe —ep,/kT: » T./2T: =
ua/ U2, we have

wo*/un = (—epp/kT:)V?/ (a%/pp* — 1)*? (A6)

which is independent of . Then introducing the error func-

tion

° _,
erf Q = (2/7'%) fo e—v'dy



1680 C. H. SHIH AND E. LEVI

we obtain
I/ = (@V2/4)upe o2y erf (wa™*/1sn)
I = —usuem/4[1 + erf(uo/uw)] erf (wa*/us)

We observe that |I/| > |I,'| and since ./ > 1, erf(uo/u.)
= 1. Therefore, the collected current is approximately

I = —2xeZN Lyau, erf(—ep,/kT:)/ (@ ps2 — 1) (AS8)

Since the error function assumes a value of 0.84 when the
argument is 1 we conclude that the effect of orbital motion
can be neglected when

[@*/ps?) — 1]V* < [ (e@p/kT:) 1M

(A7)

or
Ni/pp) < [—(e@p/kT)]'? (A9)

Equation (A9) establishes a criterion for the applicability of
our theory and was satisfied in all the experiments considered.

It is worthwhile mentioning that the assumptions leading
to Eq. (A8) are valid only for the case under consideration, in
which the mean free path is in the order of the sheath radius,
and, therefore, the most probable radial velocity u, is in the
order of (kT./m:)*/%. In contrast, the values of 4, appropriate
to the collisionless and collision-dominated limiting cases are
&T:/m:)V? and (—ep,/m;)1/2, respectively. For this reason
one should not expect the asymptotic forms of Eq. (A8) to
yield the orbital-motion and continuum limit currents.

Appendix B

In our analysis we develop the perturbation scheme only to
the lowest order. This sets an upper bound for the collision
frequency vi. that can be evaluated as follows. In substitut-
ing the collisionless » for v in the integration which leads to the
determination of the collision correetion factors, Egs. (4) and
(19), we neglect the first leading term containing . In the
case of the spherical probe this implies that

B’/ o’ = (Bas/4a)zs <1 (Bl)
or ' :

@@ 2Ny = Pa K1

and in dimensional form

Vin K (§) kT swyi/el;) (B2)
Similarly for the cylindrical probe we obtain
22y JNp/Ly, = (F5)B « 1 (B3)
and in dimensional form
Vin K LpkT awpi?/el; (B4)
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